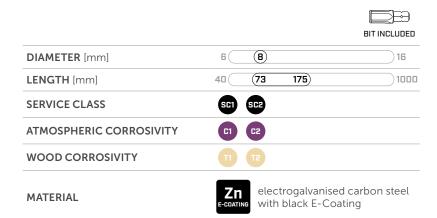
TBS FRAME

FLAT FLANGE HEAD SCREW

FLAT FLANGE HEAD

The flange head ensures excellent tightening capacity of the joint; the flat shape allows a joint without additional thickness on the wooden surface, thus enabling the fixing of plates on the same element without interference.

SHORT THREAD

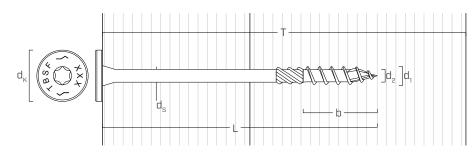

The short, fixed-length thread at $1\,1/3$ " (34 mm) is optimised for fastening multi-layer elements (Multi-ply) for lightweight frame construction.

BLACK E-COATING

Coated with black E-coating for easy recognition on site and increased corrosion resistance.

3 THORNS TIP

TBSF is easily installed without pre-drilling hole. More screws can be used in less space and larger screws in smaller elements.


FIELDS OF USE

- timber based panels
- solid timber and glulam
- CLT and LVL
- high density woods
- multilayer lattice beams

■ CODES AND DIMENSIONS

d ₁	d_K	CODE	L	b	Т	L	b	T	pcs
[mm]	[mm]		[mm]	[mm]	[mm]	[in]	[in]	[in]	
		TBSF873	73	34	76	2 7/8''	1 5/16''	3''	50
	19	TBSF886	86	34	90	3 3/8''	1 5/16''	3 1/2"	50
		TBSF898	98	34	102	3 7/8''	1 5/16''	4''	50
8 TX 40		TBSF8111	111	34	114	4 3/8''	1 5/16''	4 1/2"	50
17.40		TBSF8130	130	34	134	5 1/8''	1 5/16''	5 1/4"	50
		TBSF8149	149	34	152	5 7/8''	1 5/16''	6''	50
		TBSF8175	175	34	178	6 7/8''	1 5/16''	7''	50

GEOMETRY AND MECHANICAL CHARACTERISTICS

Nominal diameter	d_1	[mm]	8
Head diameter	d_{K}	[mm]	19,00
Thread diameter	d_2	[mm]	5,40
Shank diameter	d_S	[mm]	5,80
Pre-drilling hole diameter ⁽¹⁾	$d_{V,S}$	[mm]	5,0
Pre-drilling hole diameter ⁽²⁾	$d_{V,H}$	[mm]	6,0
Characteristic tensile strength	$f_{tens,k}$	[kN]	20,1
Characteristic yield moment	$M_{y,k}$	[Nm]	20,1

⁽¹⁾ Pre-drilling valid for softwood.
(2) Pre-drilling valid for hardwood and beech LVL.

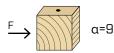
			softwood (softwood)	LVL softwood (LVL softwood)	pre-drilled beech LVL (beech LVL predrilled)
Characteristic withdrawal resistance parameter	f _{ax,k}	[N/mm ²]	11,7	15,0	29,0
Characteristic head-pull-through parameter	$f_{\text{head},k}$	[N/mm ²]	10,5	20,0	-
Associated density	ρ_a	[kg/m³]	350	500	730
Calculation density	ρ_k	[kg/m ³]	≤ 440	410 ÷ 550	590 ÷ 750

For applications with different materials please see ETA-11/0030.

MULTILAYER LATTICE

It is available in optimised lengths for fastening 2-, 3- and 4-layer lattice elements of the most common solid timber and LVL dimensions.

MINIMUM DISTANCES FOR SHEAR LOADS | TIMBER



screws inserted WITHOUT pre-drilled hole

 $\rho_k \leq 420 \; kg/m^3$

d_1	[mm]		8
a ₁	[mm]	10·d	80
a ₂	[mm]	5·d	40
a _{3,t}	[mm]	15·d	120
a _{3,c}	[mm]	10 ⋅d	80
	[mm]	5·d	40
	[mm]	5·d	40

d_1	[mm]		8
a ₁	[mm]	5·d	40
a ₂	[mm]	5·d	40
a _{3,t}	[mm]	10·d	80
a _{3,c}	[mm]	10·d	80
a _{4.t}	[mm]	10·d	80
a _{4,c}	[mm]	5·d	40

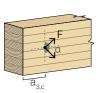
screws inserted WITH pre-drilled hole

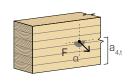
α=90°

d_1	[mm]		8
a ₁	[mm]	5·d	40
a ₂	[mm]	3·d	24
a _{3,t}	[mm]	12·d	96
a _{3.c}	[mm]	7⋅d	56
		3·d	24
	[mm]	3·d	24

 d_1 [mm] a_1 [mm] 4·d 32 4·d 32 a_2 [mm] 7·d 56 $a_{3,t}$ [mm] a_{3,c} [mm] 7·d 56 a_{4,t} [mm] 7·d 56 24 [mm] 3·d a_{4,c}

 α = load-to-grain angle

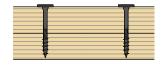

 $d = d_1 = nominal screw diameter$



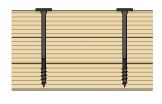
unloaded end $90^{\circ} < \alpha < 270^{\circ}$

stressed edge $0^{\circ} < \alpha < 180^{\circ}$

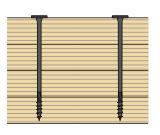
unload edge 180° < α < 360°



NOTES


- The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
- In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.
- The spacing a_1 in the table for screws with 3 THORNS tip inserted without pre-drilling hole in timber elements with density $\rho_k \leq 420 \text{ kg/m}^3$ and load-to-grain angle α =0° was assumed to be 10·d based on experimental tests; alternatively, adopt 12-d in accordance with EN 1995:2014.
- For minimum distances on LVL see TBS on page 81.

APPLICATION EXAMPLES: LIGHTWEIGHT FRAME



screw: TBSF873 timber element: 2 x 38 mm (1 1/2") total thickness: 76 mm (3 '')

screw: TBSF8111 timber element: 3 x 38 mm (1 1/2") total thickness: 114 mm (4 1/2")

screw: TBSF8149 timber element: 4 x 38 mm (1 1/2") total thickness: 152 mm (6 ")

							SHEAR		TENSION	
		(geometr	у			timber-to-timber ϵ =90°	thread withdrawal ε=90°	thread withdrawal ε=0°	head pull-through
					A		A A A		A	
d_1	L	b	Т	T	Α	Α	$R_{V,90,k}$	R _{ax,90,k}	R _{ax,0,k}	$R_{head,k}$
[mm]	[mm]	[mm]	[mm]	[in]	[mm]	[in]	[kN]	[kN]	[kN]	[kN]
	73	34	76	3''	38	1 1/2"	2,91	3,43	1,03	4,09
	86	34	90	3 1/2"	45	1 3/4''	3,27	3,43	1,03	4,09
	98	34	102	4''	51	2"	3,51	3,43	1,03	4,09
8	111	34	114	4 1/2"	57	2 1/4"	3,54	3,43	1,03	4,09
	130	34	134	5 1/4"	67	2 5/8"	3,54	3,43	1,03	4,09
	149	34	152	6''	76	3''	3,54	3,43	1,03	4,09
	175	34	178	7''	89	3 1/2"	3,54	3,43	1,03	4,09

STRUCTURAL VALUES | LVL

							SHEAR		TENSION		
geometry							LVL-LVL ε=90°	thread withdrawal ε=90°	thread withdrawal ε=0°	head pull-through	
							→ A A		T		
d ₁	L	b	T	T [in]	A	A [in]	R _{V,90,k}	R _{ax,90,k}	R _{ax,0,k}	R _{head,k} [kN]	
[mm]	[mm] 73	[mm] 34	[mm] 76	3''	[mm] 38	1 1/2"	[kN] 3,54	[kN] 3,95	[kN] 2,63	6,99	
	86	34	90	3 1/2"	45	1 3/4"	3,90	3,95	2,63	6,99	
	98	34	102	4''	51	2"	3,98	3,95	2,63	6,99	
8	111	34	114	4 1/2"	57	2 1/4"	3,98	3,95	2,63	6,99	
	130	34	134	5 1/4''	67	2 5/8"	3,98	3,95	2,63	6,99	
	149	34	152	6''	76	3''	3,98	3,95	2,63	6,99	
	175	34	178	7''	89	3 1/2"	3,98	3,95	2,63	6,99	

 ε = screw-to-grain angle

GENERAL PRINCIPLES

- Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
- Design values can be obtained from characteristic values as follows:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

The coefficients γ_{M} and $k_{\mbox{mod}}$ should be taken according to the current regulations used for the calculation.

- For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030.
- Dimensioning and verification of the timber elements must be carried out
- The screws must be positioned in accordance with the minimum distances.
- The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.
- The characteristic shear strengths were evaluated by considering the threaded part fully inserted in the second element
- The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b.
- The head pull-through characteristic strength was calculated using timber elements.

NOTES | TIMBER

- The characteristic timber-to-timber shear strengths were evaluated considering an angle ϵ of 90° (R $_{V,90,k}\!)$ between the grains of the second element and the connector.
- The characteristic thread withdrawal resistances were evaluated considering both an ϵ angle of 90° ($R_{ax,90,k}$) and of 0° ($R_{ax,0,k}$) between the grains of the timber element and the connector.
- For the calculation process a timber characteristic density $\rho_k = 385 \text{ kg/m}^3$ has been considered.
- For different ρ_k values, the strength values in the table can be converted by the $k_{\mbox{dens}}$ coefficient (see page 87).
- For a row of n screws arranged parallel to the direction of the grain at a distance $a_{1},$ the characteristic effective shear bearing capacity $R_{\text{ef,V,k}} \, \text{can be}$ calculated by means of the effective number n_{ef} (see page 80).

NOTES | LVL

- For the calculation process a mass density equal to ρ_k = 480 kg/m³ has been considered for softwood LVL elements.
- The characteristic shear strengths are evaluated for connectors inserted on the side face (wide face) considering, for individual timber elements, a 90° angle between the connector and the grain, a 90° angle between the connector and the side face of the LVL element and a 0° angle between the force and the grain.
- The axial thread-withdrawal resistance was calculated considering a 90° angle between the grains and the connector.